Arc Length Formula	Explanation
$L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$	Arc length of "nice functions" with respect to x.

1. Find the length of the following curves.
(a) $\frac{3}{4} x-\frac{1}{4}, \quad-1 \leq x \leq 3$.
(b) $12 x=4 y^{3}+3 y^{-1}, \quad 1 \leq y \leq 3$.
2. Find b such that the length of the curve $y=1+6 x^{3 / 2}, 0 \leq x \leq b$, is 6 .

Surface Area Formula	Explanation
$S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$	Surface area of "nice functions" rotated about the y-axis.

3. Find the surface areas obtained in the following situations.
(a) rotating the curve $f(x)=\sqrt{1+e^{x}}$ for $0 \leq x \leq 1$ around the x-axis.
(b) rotating the curve $f(y)=\sqrt{a^{2}-y^{2}}$ for $0 \leq y \leq a / 2$ and a constant around the y-axis
