Arc Length Formula	Explanation
$L = \int_a^b \sqrt{1 + [f'(x)]^2} dx$	Arc length of "nice functions" with respect to x .

1. Find the length of the following curves.

(a)
$$\frac{3}{4}x - \frac{1}{4}$$
, $-1 \le x \le 3$.

(b)
$$12x = 4y^3 + 3y^{-1}, 1 \le y \le 3.$$

2. Find b such that the length of the curve $y = 1 + 6x^{3/2}$, $0 \le x \le b$, is 6.

Surface Area Formula	Explanation
$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx$	Surface area of "nice functions" rotated about the y -axis.

- 3. Find the surface areas obtained in the following situations.
 - (a) rotating the curve $f(x) = \sqrt{1 + e^x}$ for $0 \le x \le 1$ around the x-axis.

(b) rotating the curve $f(y) = \sqrt{a^2 - y^2}$ for $0 \le y \le a/2$ and a constant around the y-axis